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Abstract
We show how quantum mechanical barrier reflection and transmission
coefficients R and T can be obtained from asymptotic Green functions.
We exemplify our results by calculating such coefficients for the Rosen–
Morse (RM) potential. For multiple barrier potentials, V (x) = ∑

j V
(j)(x),

where each V (j) goes to zero for x → ±∞, we derive the asymptotic Green
functions by a generalized semiclassical approximation, which is based on the
usual sum over classical paths considered only in the classically allowed regions
and includes local quantum effects through the individual R(j) and T (j). The
approach is applied to double RM potentials and to Woods–Saxon barriers. We
obtain analytical expressions for the transmission and reflection probabilities of
these potentials which are very accurate when compared with exact numerical
calculations, being much better than the usual WKB approximation. Finally
we briefly discuss how to extend the present method to other kinds of potential.

PACS numbers: 0365S, 0230G, 8530

1. Introduction

Scattering by multiple barrier potentials, V = ∑
j V

(j)(x) where each individual V (j) goes to
zero asymptotically, is a most topical problem. It turns up in the description [1] of resonant
tunnelling diode devices, disordered one-dimensional lattices and realistic one-dimensional
solid-state systems such as quantum wells, junctions and superlattices. This problem also plays
a role [2, 3] in the study of electronic transport in polymers and the effect of intermolecular
potential barriers in chemical reactions.

The goal of this paper is to calculate the energy-dependent Green function and from it
to derive, for any range of energy, analytical expressions for the transmission and reflection
amplitudes of multiple barrier potentials. Obviously, in general we cannot find closed exact
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solutions for such potentials and some kind of approximation is in order. Therefore, here we
consider a generalized semiclassical approach for the problem.

Semiclassical approximations are very valuable tools to solve quantum mechanical
systems. However, some phenomena, such as tunnelling, cannot be properly described by
the usual semiclassical approach, i.e. to consider only the classically allowed paths for the
particle, the real (valued) trajectories. In fact, these trajectories cannot deal with the possibility
of the particle being found in different (dynamically disconnected) regions of the phase space.
There are ways to overcome this difficulty: for instance, to use complex trajectories, formally
extending classical variables (momentum or time) into the complex plane. In this way one
obtains complex (valued) trajectories inside the classical forbidden regions [4]. Recently,
multi-dimensional tunnelling [5] and chaotic tunnelling [6] were discussed in this fashion.
Alternatively, we consider a semiclassical version of the Heisenberg matrix mechanics,
which in some sense ‘avoids’ the problem of connecting the distinct classical regions [7].
Furthermore, specialized extensions of the WKB approximation are also possible when one is
concerned with specific situations such as reflection above barriers [8, 9], tunnelling near the
base of barriers [10] and tunnelling in the limit of long waves [11].

Due to the characteristics of our V , complex valued trajectories inside the classically
prohibited regions can be very cumbersome to obtain [3]. Thus, in contrast to the methods
mentioned above, to calculate the asymptotic Green functions we solve the tunnelling regions
quantum mechanically, taking explicitly into account their wave aspects through local quantum
amplitudes. In the regions where the classical dynamics is well defined, we consider the usual
sum over paths, the Van Vleck–Gutzwiller formula [12], for the approximated G. To do so
we follow [13] and incorporate non-classical effects into the semiclassical formula through
generalized semiclassical amplitudesW , in substitution of the usual |ẋf ẋi |−1/2 (which diverges
at the classical turning points), writing G(xf , xi;E) = ∑

clW exp[iS/h̄]. As we are going
to see, the approach requires one to determine the quantum amplitudes of the individual V (j)

(which will yield theW ), but in general this is a much easier task than to calculate numerically
propagation along the whole V (x). We should observe that this kind of approach has already
been successfully used in the study of propagators [14], and in the exact calculation of Green
functions [15] for segmented potentials, a class of potentials which includes, for instance,
piecewise constant potentials, well known to have a poor WKB approximation.

The paper is arranged as follows. In section 2 we show how to obtain a Green function in the
above generalized semiclassical form for a general decaying potential and also how to extract
from it the transmission and reflection quantum amplitudes. In section 3 we exemplify our
general results discussing the Rosen–Morse (RM) potential. In section 4 we use an extended
version of a calculation developed in [15] and the results of section 2 to obtain the asymptotic
Green functions for a potential which is a sum of an arbitrary number of decaying potentials.
In section 5 we show that the method gives very good results by applying it for a double
RM barrier and a Woods–Saxon (WS) barrier, being a sensible improvement when compared
with the usual WKB solution. Finally, we make some remarks and draw some conclusions in
section 6.

2. Asymptotic Green functions

We consider a generic one-dimensional potential for which V (|x| → ∞) → 0. If {ϕn, ϕλ}
forms the complete set of solutions for the Schrödinger equation (ϕn and ϕλ representing,
respectively, bound and scattering states with energiesEn and h̄2λ2/(2m)), the Green function
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G(xf , xi;E) for the problem can be written as

G = G(b.s.)(xf , xi;E) +G(s.s.)(xf , xi;E)
=

∑
n

ϕn(xf)ϕ
∗
n(xi)

E − En +
∫ ∞

0
dλ
ϕλ(xf)ϕ

∗
λ(xi)

E − h̄2λ2

2m

. (1)

For convergence in calculations, we assume for the above expression the energy E + iη (with
η > 0), and afterwards take the limit η → 0+. When necessary we consider this procedure,
but for simplicity of notation we do not write this explicitly.

Asymptotically the scattering wavefunctions ϕ(±)k (x) of a plane wave incoming from the
left (+) and right (−) are given by

ϕ
(±)
k ≈ 1

N

{
exp[±ikx] + R(±)(k) exp[∓ikx] x → ∓∞
T (k) exp[±ikx] x → ±∞.

(2)

Note that T (+) = T (−) = T [16]. Also the normalization constant is independent of V , with
N = √

2π [17].
The asymptotic Green functions are obtained by inserting (2) into (1). If we denote

G±∓(xf , xi;E) for xf → ±∞, xi → ∓∞, and G±±(xf , xi;E) for xf , xi → ±∞, then
(E = h̄2k2/(2m))

G±∓ = G(b.s.)±∓ (xf , xi;E) +
m

πh̄2

∫ +∞

−∞
dλ

T (λ)
k2 − λ2

exp[iλ|xf − xi|] (3)

and

G∓∓ = G(b.s.)∓∓ (xf , xi;E) +
m

πh̄2

∫ +∞

−∞
dλ

1

k2 − λ2

{
exp[iλ(xf − xi)]

+R(±)(λ) exp[∓iλ(xf + xi)]
}
. (4)

In deriving the above equations we have used the general relations [16] T ∗(k) = T (−k)
and R(±)∗(k) T (k) + R(∓)(k) T ∗(k) = 0 for equation (3), and |R|2 + |T |2 = 1, R(±)∗(k) =
R(±)(−k) for equation (4). Obviously, if there are no bound states for the system we just set
G(b.s.) = 0.

The integral involving exp[iλ(xf − xi)] in (4) leads to a free particle Green function. For
the other integrals we consider contour integration along the real axis closed by an infinite
semicircle in the upper half of the complex plane. The pole contributions in the integrations
are due to the denominator k2 − λ2 and possible singularities of R(λ) and T (λ). Concerning
the poles of the quantum coefficients in the upper half of the complex plane λ we note the
following. For V non-negative everywhere, for example barriers, the poles [18] (i) are absent
when V has either a compact support or a Gaussian-like decay and (ii) exist when V decreases
exponentially, appearing at a finite distance to the real axis. If the potential has bound states,
say V is a well, besides the results above we also (iii) have poles corresponding to bound
energies which are on the positive imaginary axis [16].

For a very large number of cases (see, for instance, [15] and references therein) the
terms in the integrations resulting from the bound energy poles exactly cancel G(b.s.). In
fact, such cancellations may happen in general as has been argued in [15]. However, if the
conjecture is not true, we observe that if a scattering wavefunction is properly extended to the
k-complex plane (at the position of a bound energy), the result is proportional to the bound
state wavefunction [19]. Thus, G(b.s.) and these terms decrease exponentially as x → ±∞
since bound states are localized, so they can be disregarded. For the other poles of R and T ,
which are related to the asymptotic decreasing of V (see (i) and (ii) above), it is easy to see
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that they will lead to terms of the form C exp[−c(|xf | + |xi|)], with C bounded and c > 0. So,
they can also be dropped in the asymptotic limit.

With all this in mind, the remaining steps in the calculations of (3) and (4) are quite
straightforward. Thus, we finally find

G±∓(xf , xi;E) = m

ih̄2k
T (k) exp[ik|xf − xi|] (5)

and

G∓∓(xf , xi;E) = m

ih̄2k

{
exp[ik|xf − xi|] + R(±)(k) exp[∓ik(xf + xi)]

}
. (6)

The above expressions are deduced for potentials which in the asymptotic limit go to
zero at least exponentially. Although there are studies of the continuous spectrum of slowly
decaying potentials [20] (for instance, having power law tails), as far as we know there are
no general results regarding the pole structures of their quantum amplitudes. Therefore, in
principle we cannot assure that (5) and (6) are also valid for this kind of problem. However,
we recall that the main point in the previous derivations is to have all the pole contributions
from R and T vanishing exponentially as |x| → ∞. Thus, our asymptotic Green functions
hold for any V for which this is the case.

3. An explicit case, the Rosen–Morse barrier

In this section we exemplify our general results by analysing a specific case, the RM potential
V
(RM)
± (x) = V0/ cosh2[α(x±c)] (for V RM

+ see figure 1(a)). We derive its exact Green function
and show that in the asymptotic limitG is given by our previous expressions. We observe that
different approximations [8, 21] have been used in the study of this barrier.

Here, for simplicity, we set α = 1 and c = 0. The exact Green function G(RM)(xf , xi;E)
is given by the differential equation (U0 = 2mV0/h̄

2)

h̄2

2m

[
− ∂2

∂x2
f

+
U0

cosh2[xf ]
− k2

]
G(RM) = −δ(xf − xi). (7)

Kleinert and Mustapic [22] found the following exact solution for (7) (valid for any value of
E):

G(RM) = −m
h̄2 �(n(E)− s) �(n(E) + s + 1)

×[
 (xf − xi)P

−n(E)
s (tanh[xf ])P

−n(E)
s (− tanh[xi]) + {xf ↔ xi}

]
(8)

where P ba (z) is the associated Legendre function, �(z) is the gamma function,  (z) is the

Heaviside function, s = (−1 +
√

1 − 4U0)/2 and n(E) =
√

−2mE/h̄2. In [22] the authors
are interested in boundary conditions such that G(RM) vanishes for x → ±∞. For this, they
consider Re [n(E)] > 0 and write n(E) = +ik. However, our interest is in the scattering
states, i.e.G(RM) �= 0 for x → ±∞. Thus, observing that n(E) = −ik in (8) is also a solution
for (7), and then the condition Re [n(E)] > 0 (following the assumptions in [22]) is no longer
satisfied, we can rewrite equation (8) for xf > xi as (t±(x) = (1 ± tanh[x])/2)

G(RM) = −m
h̄2

�(−ik − s) �(−ik + s + 1)

�(−ik + 1) �(−ik + 1)
exp[ik(xf − xi)]

×F(−s, s + 1; 1 − ik; t−(xf)) F (−s, s + 1; 1 − ik; t+(xi)). (9)

In deriving (9), we have used the identity (9) of [22], relating the associated Legendre functions
to the hypergeometric functions F(a, b; c; z) (see [23]). The above Green function can also be
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Figure 1. (a) The single RM potential V RM
+ (x) (dashed curve) and the double RM potential

V d.RM(x) = V RM
+ + V RM− . For V d.RM, the classical turning points are four in number if

V d.RM(0) < E < V d.RM(±c) and two (only the external ones, ±x2) if E < V d.RM(0). Here,
α = 1/20 and c = 50, so the RM barrier V RM

+ practically does not overlap significantly with V RM− .
Figures (b)–(d) show three examples of scattering paths for the double RM potential. The particle
tunnels V RM

+ , suffers (b) zero, (c) one and (d) two multiple reflections in between the two single
RM barriers and finally tunnels V RM− .

written in a different form, useful to analyse the reflection case. Applying the identity 9.131-2
of [23] to the hypergeometric function with argument xf in (9), we find

G(RM) = m

ikh̄2 F(−s, s + 1; 1 − ik; t+(xi))

×
{

exp[ik(xf − xi)]F(−s, s + 1; 1 + ik; t+(xf))

+
�(−ik − s) �(−ik + s + 1) �(ik)

�(−s) �(s + 1) �(−ik)
exp[−ik(xf + xi)] (1 + exp[2xf ])

ik

×F(1 − ik + s,−ik − s; 1 − ik; t+(xf))

}
. (10)

Now, we consider the asymptotic limit for the exact Green functions (9) and (10). If
xf → ∞ and xi → −∞ in (9), then t−(xf) and t+(xi) go to zero. Since for the hypergeometric
functions F(a, b; c; 0) = 1 [23], we find

G
(RM)
+− (xf , xi;E) = m

ikh̄2 T (RM) exp[ik(xf − xi)] (11)

with

T (RM) = k

i

�(−ik − s) �(−ik + s + 1)

�(−ik + 1) �(−ik + 1)
. (12)
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In the same way, considering in (10) xf , xi → −∞, we obtain

G
(RM)
−− (xf , xi;E) = m

ikh̄2

{
exp[ik(xf − xi)] + R(RM,+) exp[−ik(xf + xi)]

}
(13)

where

R(RM,+) = �(−ik − s) �(−ik + s + 1)�(ik)

�(−s) �(s + 1)�(−ik)
. (14)

T (RM) and R(RM,+) are the correct transmission and reflection coefficients for the RM
barrier [24, 25].

Thus, we see from (11)–(14) that the asymptotic Green functions for the RM potential are
exactly in the general forms discussed in section 2. Finally, we mention that the pole structures
for the quantum amplitudes (12) and (14) are analysed in [18].

4. Multiple-barrier case

Suppose the HamiltonianH = H(0) +V , withG(0) being the Green function forH(0). We can
obtain G for H from

G(xf , xi;E) =
∞∑
j=0

∫ +∞

−∞
dx1 . . . dxj V (x1) . . . V (xj )G

(0)(x1, xi;E) . . .G(0)(xf , xj ;E). (15)

Now we assume V = ∑N
j=1 V

(j)(x), with V (j)(|x| → ∞) → 0 for all j and no appreciable
overlapping between the V (j) (see, for instance, figure 1(a)). From the above expansion and
the results in section 2 we construct the asymptotic Green function for this multiple barrier
potential.

Since we shall derive a semiclassical formula for the problem, which includes, for example,
multiple propagation between the V (j), we need to consider the classical actions of the
corresponding trajectories. Thus, instead of the expressions for theG derived in section 2, we
use the slightly modified asymptotic Green functions (see appendix A)

G∓∓(xf , xi; k) = m

ih̄2k

{
exp

[
i

h̄
Sk(xf , xi)

]
+ R(±)(k) exp

[
∓ i

h̄
(Sk(xf , x0) + Sk(xi, x0))

]}

G±∓(xf , xi; k) = m

ih̄2k
T (±)(k) exp

[
i

h̄
(Sk(xf , x

(±)
0 ) + Sk(xi, x

(∓)
0 ))

]
.

(16)

In (16), Sk is the classical action, x0 are just reference points (chosen according to convenience,
see the next section) and R and T are related to the amplitudes R and T by energy-dependent
phases (equation (31) in appendix A).

The procedure to follow now is completely analogous to that in [15], where the lengthy
calculations are performed in detail, so here we just outline the main steps and the final results.
For a given energy, we assume that the end points xi and xf are outside the classically prohibited
regions; for instance, for the case shown in figure 1(a), the prohibited regions are (−x2,−x1)
and (x1, x2). First, we consider H(0)(x) = − h̄2

(2m) d2/dx2 (G(0) being then the free Green

function) and set V (x) equal to a single V (j), say V (1). From (15) we have G(1) given as a
series, whose terms are given by integrals over the classical actions and V (1), but since G(j),
for any j , must be given as in (16), we can formally associate for V (j) its corresponding T (j)

and R(j) through such series. Thus, we end up with G(1) in the appropriate form (16). Next
we proceed by assuming H(0)(x) = − h̄2

(2m) d2/dx2 + V (1), where this time the unperturbed

Green function is G(1) calculated in the previous step. For V (x) we take the single potential
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V (2). Equation (15) now leads to a series involving T (1), R(1), classical actions and V (2).
Again, we can identify from the series expressions corresponding to the coefficients R(2) and
T (2). After this identification, the series reduces to an infinite sum comprising only the four
quantum amplitudes, but which can be performed exactly since it is a geometric series. The
resulting Green function is once more given by a formula like equation (16), but now with the
amplitudes being functions of R(1), T (1), R(2) and T (2). The process thus can be recursively
repeated until all the N potentials V (j) are included [15]. This yields

G(gcl) = m

ih̄2k

∑
s.p.

Ws.p. exp

[
i

h̄
Ss.p.(xf , xi;E)

]
. (17)

Here, s.p. stands for ‘scattering path’, and Ss.p. and Ws.p. are, respectively, its corresponding
classical action and amplitude. A ‘scattering path’ represents a trajectory where the particle
starts from xi, suffers multiple reflections and transmissions between the V (j), and finally
arrives at xf . In an s.p. however, the particle never goes into a classically forbidden region; it
reflects from or tunnels these regions instead (this point will become clearer in the applications
in the next section). The weightsWs.p. are constructed as follows: each time the particle hits a
classical turning point associated with V (j), it can be reflected or transmitted by the potential.
In the first caseW gains a factor R(j), and in the second it gains a factor T (j). The totalW is
then the product of all the partial amplitudes for that particular s.p.

For segmented potentials, i.e., potentials written as a sum of non-overlapping V (j) of
compact support, expressions such as (17) lead to exact Green functions [15]. In the present
case equation (17) is an approximation, because to derive it we (i) use the asymptotic Green
functions (16) and (ii) consider that in the region between the classical turning points ofV (j) the
totalV (x) is practically well described byV (j) alone, i.e. the contribution of the otherV (i) toV
in such a region is not very important (e.g. see figure 1(a)). So, we can use the transmission and
reflection coefficients T (j) andR(j) at these classical turning points to constructW . Thus, if the
individual potentials become closer and closer we expect to have a less accurate approximation
from our method. However, as we will see from the next examples, the V (j) can be fairly close
to each other and yet we obtain good results from G(gcl). We leave to the last section the
discussion of ways to overcome the difficulties when the V (j) are too close together.

Finally, we can derive the quantum coefficients for multiple barrier potentials from the
Green function by (a) setting xi → ±∞ and xf → ±∞ (reflection case) or xi → ∓∞ and
xf → ±∞ (transmission case), (b) taking the appropriate asymptotic limit for the S(xf , xi)

and (c) performing the sum in (17). The final result must have exactly the same form as the
asymptotic Green functions from section 2. Therefore, by a direct inspection we obtain the
desired quantum amplitudes. We illustrate this procedure in the examples in the next section.

5. Examples

5.1. Double Rosen–Morse potential

The double RM potential is given by V (d.RM)(x) = V (RM)
+ (x)+V (RM)

− (x). We discuss only the
transmission case; the reflection case follows in a similar fashion.

We need to consider all the scattering trajectories joining the end points. Each particular
trajectory can be described as follows. The particle leaves the initial position xi < −x2 (see
figure 1) and goes to −x2. In −x2, the particle tunnels to −x1 (in this step the path’s contribution
to the semiclassical propagator gains a factor T (RM)). Between the classical turning points,
−x1 and x1, the particle suffers n multiple reflections (gaining a factor [R(RM)]2n). Then the
particle tunnels to x2 (the contribution again gaining a factor T (RM)). Finally, it travels to the
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final position xf > x2. Figures 1(b)–(d) show schematically three examples of these ‘classical
paths’.

The generalized semiclassical Green function is written as

G
(gcl)
+− = m

ikh̄2

{
T (RM) exp

[
i

h̄
S(−x2, xi)

] ∞∑
n=0

[
R(RM)

]2n
exp[ik(2n + 1)φ(k)]

×T (RM) exp

[
i

h̄
S(xf , x2)

]}

= m

ikh̄2 T
(d.RM)
(gcl) exp

[
i

h̄
{S(xf , x2) + S(−x2, xi)}

]
. (18)

The expressions for the action S and the amplitudes T (RM) and R(RM) are presented in
appendix B. The generalized semiclassical transmission coefficient for the double RM barrier
is then

T
(d.RM)

gcl =
(

[T (RM)]2

1 − [
R(RM)

]2
exp[2ikφ(k)]

)
exp[ikφ(k)] (19)

where (ε = V0/E)

φ(k) =
∫ +x1

−x1

dx

√
1 −

(
ε

cosh2[α(x + c)]
+

ε

cosh2[α(x − c)]

)
. (20)

In (20), if E < V (d.RM)(0), we take x1 = 0, so φ = 0. On the other hand, if E > V (d.RM)(c),
then x1 = c (see figure 1(a)). Depending on the distance between the two barriers, the above
integral can be approximated by (with I defined in appendix B)

φ(k) ≈ 2
∫ 0

−c+arccosh[
√
ε]/α

dx
√

1 − ε

cosh2[α(x + c)]

≈ 1

α
×

{
2I (αc)− ln[|ε − 1|] if ε �= 1

2 ln[cosh[αc]] if ε = 1.
(21)

It is worth recalling that equations (18) and (19) are valid for any value of E.
In order to test how accurate the method is, we numerically integrate the Schrödinger

equation for this potential using the split-operator approach. We evolve a Gaussian wavepacket
initially localized well to the left of the potential. After sufficient evolution time the packet is
split into the reflected and transmitted parts. By choosing a very broad Gaussian the average
momentum and consequently the energy are well defined, so its transmission can quite fairly
be compared with the steady-state plane wave transmission probability [14], which in our case
is |T (d.RM)

gcl |2 (we note that T and T differ only by a global phase).
For the parameters we choose typical values for heterostructures in GaAs [26]; the

particle’s mass is m = 0.07 × electron mass, V0 = 0.23 eV, α−1 = 20 Å and c = 50
and 25 Å. The transmission probability |T (d.RM)

gcl |2 is displayed in figures 2(a) and (b) and
shows a very good agreement with the exact numerical calculations1. We observe that this
is also the case even when the individual barriers are close to each other, as for c = 25 Å,
figure 2(b). For this last case we have integrated (20) numerically.

1 Figure 2(a) differs from figure 9 of [14], which in principle corresponds to the same calculations. We were able
to exactly reproduce the graph of Kira et al by using a barrier height of 0.23 eV/2 = 0.115 eV, so there may be a
misprint in [14] regarding the value of V0 for that plot.
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Figure 2. (a) Comparison between the transmission probability, for the parameters as in the text
and c = 50 Å, for the double RM potential calculated exact numerically (solid curve) and by using
our generalized semiclassical approximation (dotted curve). In the inset is shown the double RM
potential and the single V RM

+ (x) barrier (dotted curve). (b) The same as in (a) but with c = 25 Å.
For E < V0 we also plot the usual WKB approximation, equation (22) (which is valid only in this
region of energy), with (c) c = 50 Å and (d) c = 25 Å.

We also compare our approach with the usual WKB approximation. In [27] (p 86,
problem 12) the authors discuss the WKB wavefunction for a general double barrier potential.
Specializing their expressions for our system, we obtain the following transmission probability:

|T (d.RM)
WKB |2 =

(
4 exp

[
4π
k

α
(
√
ε − 1)

]
cos2[kφ(k)] + sin2[kφ(k)]

)−1

(22)

valid only for E < V0 (for E > V0 the above expression rapidly increases to values greater
than unity, losing its physical meaning). In figures 2(c) and (d) equation (22) is compared with
our results. We see that our generalized semiclassical method is really better than the WKB
approximation and, in contrast to (22), valid for the whole energy range.

5.2. Woods–Saxon barrier

The method can also be applied to potentials having asymmetric asymptotic behaviour. As
an example we consider the WS steps V (WS)

(±) = V0/(1 + exp[±α(x ∓ c)]), which go to 0 for
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x → ±∞ and to V0 for x → ∓∞. Their quantum mechanical amplitudes are presented in
appendix C.

It is straightforward to extend the results in section 2 to this case. Indeed, the asymptotic
Green functions, say, for V (WS)

(−) with c = 0, are easily obtained as (valid for any value of E)

G±∓ = m

ih̄2√kµT (WS,±)
(−) exp[±i(k∓xf − k±xi)]

G∓∓ = m

ih̄2k±

{
exp[ik±|xf − xi|] + R(WS,±)

(−) exp[∓ik±(xf + xi)]
} (23)

where k+ = k and k− = µ =
√

2m(E − V0)/h̄
2.

We construct a WS barrier by writing V (WSb.)(x) = V0/(1 + exp[−α(x + c)])− V0/(1 +
exp[−α(x − c)]), figure 3(a). This barrier can be treated as a composition [28] of the two
potential steps VWS

(−) and VWS
(+) , so we can derive the Green function and consequently the

transmission and the reflection amplitudes by following the same steps as those for the double
RM potential. We illustrate this by discussing in detail the reflection case. Suppose E > V0,
then there is a direct path (the particle goes straight from xi to xf without hitting the barrier)
and a whole class of indirect paths. For the indirect paths the particle leaves xi � −c and can
either (i) be reflected at −c (gaining a factor R(WS,+)

(−) ) coming back to xf � −c, or (ii) cross

the point −c (gaining a factor T (WS,+)
(−) ), suffer n multiple scatterings within the region (−c, c)

(gaining a factor [R(WS,−)
(−) ]2n−1, note that R(WS,−)

(−) = R
(WS,+)
(+) ) and finally cross −c (gaining a

factor T (WS,−)
(−) ) arriving at xf � −c. Examples of such paths are displayed in figures 3(b), (d).

Here we take the reference points x0 in equation (16) as being ±c, but it is easy to show that
the final results do not depend on any particular choice for them. Thus, we find that the Green
function is (for S, the quantum amplitudes and the function J see appendix C)

G
(gcl)
−− = m

ikh̄2

{
exp

[
i

h̄
S(xf , xi)

]
+ R(WS,+)

(−) exp

[
i

h̄
{S(−c, xi) + S(xf ,−c)}

]

+T (WS,+)
(−) R

(WS,−)
(−) exp

[
i

h̄
S(−c, xi)

] ∞∑
n=0

[
R
(WS,−)
(−)

]2n
exp[2(n + 1)ikφ(k)]

×T (WS,−)
(−) exp

[
i

h̄
S(xf ,+c)

]}

= m

ikh̄2

{
exp

[
i

h̄
S(xf , xi)

]
+ R(WS b.,+)

gcl exp

[
i

h̄
{S(xf ,−c) + S(−c, xi)}

]}
(24)

with

R
(WS b.,+)
gcl = R(WS,+)

(−) +
T
(WS,+)
(−) T

(WS,−)
(−) R

(WS,−)
(−) exp[2ikφ(k)]

1 − [
R
(WS,−)
(−)

]2
exp[2ikφ(k)]

(25)

where (ε = V0/E)

φ(k) =
∫ +c

−c
dx

√
1 −

(
ε

1 + exp[−α(x + c)]
− ε

1 + exp[−α(x − c)]
)

≈ 2
∫ c

0
dx

√
1 − ε

1 + exp[−αx]

= 2

α
(J (exp[−αc])− J (1)). (26)

The approximation made in the above integration is valid for large values of c.
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Figure 3. (a) The potential step V (WS)
+ (dashed line) and the WS barrier V (WS b.)(x) =

V0/(1+exp[−α(x+c)])−V0/(1+exp[−α(x−c)]). The barrier can be viewed as a composition of
V
(WS)
+ and V (WS)

− . Three examples of scattering paths for the WS barrier for E > V0 are displayed
in (b)–(d). (b) A single reflection at −c. (c) Transmission at −c, reflection at +c and transmission
at −c. (d) The same as in (c) but now with an extra bouncing between −c and +c.

As discussed before, the relation between R and R is established by taking explicitly
the limit of xf , xi → −∞ and then comparing (24) with the general form of the Green
function in (6). From the results in appendix C it is straightforward to show that R(WS b.,+)

gcl =
R
(WS b.,+)
gcl exp[if (+)R ]. For the transmission case (xf → +∞, xi → −∞) a similar analysis

gives

T
(WS b.)

gcl =
(

T
(WS,+)
(−) T

(WS,−)
(−)

1 − [
R
(WS,−)
(−)

]2
exp[2ikφ(k)]

)
. (27)

We derived all these expressions assuming E > V0, but, as in a full quantum mechanical
calculation, they are equally valid for E < V0.

To test the above expressions we consider the same values of V0 and mass as used for
the double RM potential and set c = 40 Å, with α−1 = 5 Å (figure 4(a)) and α−1 = 0.2 Å
(figure 4(b)). Figure 4(a) shows a very good agreement between the generalized semiclassical
transmission and reflection probabilities and the exact numerical calculations. For the values
of α in figure 4(b) the smooth barrier practically becomes the usual rectangular barrier (see the
inset). We compare our results with the analytical transmission and reflection probabilities for
the rectangular barrier and the agreement is quite good. In fact, one can easily show that in the
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Figure 4. (a) Reflection and transmission probabilities from our method (dotted curves) compared
with exact numerical calculations (solid curves). The parameters are as in the text and α−1 = 5 Å.
In the inset is shown the WS barrier, where for reference is also plotted the V (WS)

+ step (dotted
curve). (b) The same parameters as in (a) but with α−1 = 0.2 Å. Since in this case the WS barrier
(inset) is practically a rectangular barrier we compare our generalized semiclassical approximation
(dotted line) with the results of an equivalent rectangular barrier (solid line). The agreement is such
that we cannot distinguish between the curves.

limit of α → ∞ equations (25) and (27) give the exact quantum amplitudes for the rectangular
barrier.

6. Discussion and conclusions

Throughout this paper we have discussed an improved semiclassical approach to calculate
Green functions for multiple barrier potentials. We showed how asymptotic semiclassical
Green functions can lead to transmission and reflection amplitudes of decaying potentials. In
particular, we emphasized the problem of barrier tunnelling. Two cases, double symmetric
RM and WS barriers, were explicitly calculated. Good analytical results were obtained for
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their transmission and reflection probabilities.
The generalized semiclassical approximation presented here is a mixed approach. Only the

usual sum over classical trajectories is used to construct the Green functions (in contrast with
situations where purely non-classical paths are necessary to describe the system evolution [29]).
However, local quantum effects due to each barrier are fully treated in terms of quantum
coefficients which contribute as amplitudes (or weights) for the classical paths. Global
transmission and reflection amplitudes are obtained by just composing semiclassically the
‘parts’ (the V (j)) of the whole potential. Thus, our method can be regarded as a semiclassical
version of a quantum multiple-scattering theory [30].

To illustrate our results we discussed two examples for which the number of single barriers
isN = 2. One may think that for a largeN the sum in (17) would be hard to carry out. However,
this is not the case. First we observe that the series in (17) is always a geometric series, so it
can be performed exactly. Second, to identify all the scattering paths may seem difficult, but
in [15] a simple method is derived that allows one to classify and to sum up all the scattering
paths in a straightforward way.

Although the potentials discussed here are already of interest, one may want to extend
the present method to other situations, for example if the individual V (j) decay exponentially
and are very close to each other, if they have power-law decay and, finally, if the whole V is
not written as

∑
j V

(j)(x), but still has successive ‘valleys’ and ‘hills’ in a certain region and
then decays asymptotically. We can apply our method in all these cases. The semiclassical
Green function is again given by (17), with the actions given by

∫
dx

√
2m[E − V (x)] in the

classically allowed regions. But now the R and T are constructed as follows. We fit each
hill by a single barrier which falls off exponentially but locally has the same shape as the
hill. Then, the transmission and reflection amplitudes to be considered are those of the fitted
barriers. Obviously, the difficulties in implementing such a decomposition will depend on
each system considered.

Finally, we would like to comment on the energy-dependent phases, which connect the
usual reflection and transmission amplitudes R and T with our R and T (see appendix A).
If we reorganize all these phases, written W = w exp[iµ(E)], we have from (17) G(gcl) =
m/(ih̄2k)

∑
w exp[i(S/h̄ + µ(E))]. Thus, µ(E) can be considered as a generalized Maslov

index. Recently [31], modifications in the usual Maslov index have led to nice improved
semiclassical results for barrier scattering and for the bound state energy spectrum. Following
this line, one could try, from the WKB quantization rule [12]

∮
p(x) dx = h̄π(n + µ/4),

with µ calculated as in the present approach, to obtain the eigenenergies for confined systems.
Indeed, this prescription gives accurate bound energies for quantum wells as will be reported
elsewhere.
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Appendix A

The Schrödinger equation can be written as [32]

ϕ
(±)
k (x) = C√

p(x)

{
A(±)(x) exp

[
± i

h̄

∫ x

x0

dy p(y)

]
+ B(±)(x) exp

[
∓ i

h̄

∫ x

x0

dy p(y)

]}
(28)
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with p(x) = √
2m[Ek − V (x)], Ek = h̄2k2/(2m), C the normalization constant and

(f ′(x) ≡ df (x)/dx)

A′(±)(x) = p′(x)
2p(x)

B(±)(x) exp

[
∓ 2i

h̄

∫ x

x0

dy p(y)

]

B ′(±)(x) = p′(x)
2p(x)

A(±)(x) exp

[
± 2i

h̄

∫ x

x0

dy p(y)

]
.

(29)

We note that x0 is just a reference point and can be chosen arbitrarily. Different solutions for
the wavefunctions are obtained by considering different boundary conditions. For scattering
states, the appropriate boundary conditions for waves incoming from the left (+) and right (−)
are A(±)(∓∞) = 1 and B(±)(±∞) = 0. So, we can rewrite (29) as

A(±) = 1 +
∫ x

∓∞
dy
p′(y)
2p(y)

B(±)(y) exp

[
∓ 2i

h̄

∫ y

x0

dz p(z)

]

B(±) = −
∫ ±∞

x

dy
p′(y)
2p(y)

A(±)(y) exp

[
± 2i

h̄

∫ y

x0

dz p(z)

]
.

(30)

Usually, we can solve (30) only by using some kind of approximation. For instance, if
we assume p′/(2p) ≈ 0, we obtain the usual WKB solution [32]. Better expressions are, in
general, derived with the help of recurrence procedures [33].

Suppose that for x > x+ and x < x−, p′/2p in (30) is small and so we can approximate
A(±)(x >

<
x±) ≈ A(±)(±∞) and B(±)(x <

>
x∓) ≈ B(±)(∓∞). In this limit we can identify the

amplitudes A and B with the usual reflection and transmission amplitudes

A(±)(±∞) = T (±) = T exp[iφ(±)T ]

B(±)(∓∞) = R(±) = R(±) exp[iφ(±)R ]
(31)

and write for (28) (withC/p ≈ 1/N andSk(x, x0) = ∫ x
x0

dy p(y) = h̄k ∫ x
x0

dy
√

1 − V (y)/Ek)

ϕ
(±)
k (x) = 1

N

{
exp

[
± i

h̄
Sk(x, x0)

]
+ R(±) exp

[
∓ i

h̄
Sk(x, x0)

]}
for x

<

>
x∓

ϕ
(±)
k (x) = 1

N T (±) exp

[
± i

h̄
Sk(x, x0)

]
for x

>

<
x±.

(32)

The phases in (31) are obtained through a direct comparison between the asymptotic
wavefunctions (2) and (32) (for which the limit of Sk(x → ±∞, x0)must be explicitly taken).
Observe that the wavefunctions (2) and (32) may differ by a physically irrelevant overall phase.

Now, the Green function outside the region (x−, x+) is obtained by using (32) into (1).
All the assumptions made in section 2 are also valid here. So, following the same steps and
noticing that −Sk(xf , xi) = S−k(xf , xi) we finally obtain the asymptotic Green function (16).

Appendix B

Here we consider the classical action S for the single RM potential V (x) = V0/ cosh2[αx].
We define ε = V0/E and identify the x0 in (16), for ε � 1, as the classical turning points
±xt = ±arccosh[

√
ε]/α and, for ε � 1, as xt = 0. S is given by

S(xf , xi) =
∫ xf

xi

dx

√
2m

(
E − V0

cosh2[αx]

)

= h̄ k
α

{sign(xf)I (α|xf |)− sign(xi)I (α|xi|)} (33)
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with (for ε �= 1)

I (x) = ln

[
sinh[x] +

√
cosh2[x] − ε

]
+

√
ε

4
ln


(√

ε sinh[x] −
√

cosh2[x] − ε
√
ε sinh[x] +

√
cosh2[x] − ε

)2

 (34)

and (for ε = 1)

I (x) = ln[cosh[x]]. (35)

We now shall analyse different asymptotic limits of S. For this we set S±∓ =
±S(∓xt , xi → ∓∞) ± S(xf → ±∞,±xt ) and S∓∓ = ±S(∓xt , xi → ∓∞) ∓ S(xf →
∓∞,∓xt ) (the signs in front the S are to take into account the correct directions of movement).
From (34) and (35) we derive the following important relations:

I (αxt ) =
{

1
2 ln[|ε − 1|] ε �= 1

0 ε = 1

I (x → ∞) = x +




√
ε

2
ln[|√ε − 1|/(√ε + 1)] ε �= 1

− ln[2] ε = 1.

(36)

Then, with the help of (36) we find

S±∓ = h̄k(|xf − xi| − L(k))
S∓∓ = h̄k(|xf + xi| − L(k)) (37)

where

L(k) = α−1{2√
ε ln[

√
ε + 1] + (1 − √

ε) ln[|ε − 1|]} (38)

is valid for any ε including the limit of ε → 1, which gives L(k) = 2 ln[2]/α.
From equations (37), (38) and the discussion in section 4 we can directly identify the

quantum amplitudes R and T to be used in the generalized semiclassical Green function for
the RM potential. They are

T (RM) = T (RM) exp[ikL(k)]
R(RM) = R(RM) exp[ikL(k)].

(39)

We should observe that one can incorporate the parameter α in all the expressions in section 3
(including in R and T above) by rescaling: k → k/α, V0 → V0/α

2 and x → x × α.

Appendix C

For the WS step V0/(1 + exp[−αx]) the quantum amplitudes can be obtained with the help
of the results in [25], which lead after a little lengthy but straightforward calculation to
(µ =

√
2m(E − V0)/h̄

2)

R(WS,+)
(−) = �(2ik/α)�(−i(k + µ)/α)�(1 − i(k + µ)/α)

�(−2ik/α)�(i(k − µ)/α)�(1 + i(k − µ)/α)
T (WS,+)
(−) = �(−i(k + µ)/α)�(1 − i(k + µ)/α)

�(−2ik/α)�(1 − 2iµ/α)
.

(40)

The superscript + represents an incident wave from the left. The case of an incoming wave
from the right (−) is given by k ↔ µ in (40).
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The classical action is (ε = V0/E)

S(xf , xi) =
∫ xf

xi

dx

√
2m

(
E − V0

1 + exp[−αx]

)

= h̄ k
α

{J (exp[−αxf ])− J (exp[−αxi])} (41)

with

J (u) = √
1 − ε ln

[
−2
(1 + u)

u

√
1 − ε

(√
1 − ε +

√
1 − ε

1 + u

)
− ε

]

− ln

[
2(1 + u)

(
1 +

√
1 − ε

1 + u

)
− ε

]
. (42)

For our purposes we define S±∓ = ±S(xf → ±∞, xi → ∓∞) and S∓∓ = ±S(0, xi →
∓∞)∓ S(xf → ∓∞, 0) (again the signs in front of the S are to take into account the correct
directions of movement). Using (41) and (42) one can show that (k+ = k, k− = µ)

S±∓ = h̄(±(k∓xf − k±xi)− fT )
S∓∓ = h̄(∓k±(xf + xi)− f (∓)R )

(43)

where

fT = k

α
ln

[
2 − ε + 2

√
1 − ε

4

]
+
µ

α
ln

[
2 − ε + 2

√
1 − ε

4(1 − ε)

]

f
(+)
R = 2

k

α
ln

[
2(1 +

√
1 − ε)− ε

4(1 +
√

1 − ε/2)− ε

]
+ 2
µ

α
ln

[
4(1 − ε +

√
(1 − ε)(1 − ε/2)) + ε

4(1 − ε)
]

f
(−)
R = 2

k

α
ln

[
1 +

√
1 − ε/2 − ε/4

]
+ 2
µ

α
ln

[
2 − ε + 2

√
1 − ε

4(1 − ε +
√
(1 − ε)(1 − ε/2)) + ε

]
.

(44)

From equations (43) and (44) and the discussion in section 4 the quantum amplitudes R
and T for the WS barrier follow:

T
(WS,±)
(−) = T (WS,±)

(−) exp[ifT ]

R
(WS,±)
(−) = R(WS,±)

(−) exp[if (±)R ].
(45)
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